$2 \cdot 87 - 3 \cdot 04$ Å (Hamilton & Ibers, 1968). Because of the mirror plane through N the two N···O contacts of $3 \cdot 050$ (4) Å represent a case of bifurcation (*cf.* Fig. 1).

The authors thank Dr Susan Jagner for revising the English text. Financial support has been obtained from the Swedish Natural Science Research Council (NFR).

References

- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A26, 71–83.
- COPPENS, P., LEISEROWITZ, L. & RABINOVICH, D. (1965). Acta Cryst. 18, 1035–1038.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104– 109.
- CRUICKSHANK, D. W. J. (1970). Crystallographic Computing, p. 195. Copenhagen: Munksgaard.

- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24 390-399.
- FALCK, L. & LINDQVIST, O. (1978). Acta Cryst. B34, 3145– 3146.
- FISCHER, R. (1969). Monatsh. Chem. 100, 1809-1822.
- HAMILTON, W. C. & IBERS, J. A. (1968). Hydrogen Bonding in Solids, p. 263. New York: Benjamin.
- JOHANSSON, G. B. (1978a). Acta Cryst. B34, 2830–2832.
- JOHANSSON, G. B. (1978b). Thesis. Univ. of Göteborg.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580–589.
- LINDGREN, O. (1977). Thesis. Univ. of Göteborg.
- LINDQVIST, O. (1973). Thesis, p. 53. Univ. of Göteborg.
- LINDQVIST, O. & LEHMANN, M. S. (1973). Acta Chem. Scand. 27, 87–95.
- LINDQVIST, O. & LJUNGSTRÖM, E. (1979). J. Appl. Cryst. 12, 134.

Acta Cryst. (1979). B35, 1686–1689

Tricarbonyl(1,1-dimethoxy-2,4,6-triphenyl- λ^5 -phosphorin)chrom und (4-*tert*-Butyl-1,1-difluor-2,6-diphenyl- λ^5 -phosphorin)tricarbonylchrom

VON TONY DEBAERDEMAEKER

Sektion für Röntgen- und Elektronenbeugung, Universität Ulm 7900 Ulm-Donau, Bundesrepublik Deutschland

(Eingegangen am 30. November 1978; angenommen am 1. März 1979)

Abstract. $C_{28}H_{23}CrO_5P$, $Cr(C_{25}H_{23}O_2P)(CO)_3$, orthorhombic, $P2_12_12_1$, Z = 4, a = 18.655 (8), b = 15.550 (7), c = 8.529 (5) Å, R = 0.114 for 1247 observed reflexions. $C_{24}H_{21}CrF_2O_3P$, $Cr(C_{21}H_{21}F_2P)$ -(CO)₃, monoclinic, $P2_1/a$, Z = 4, a = 15.092 (6), b = 12.442 (5), c = 13.119 (6) Å, $\beta = 115.1$ (1)°, R = 0.059 for 3457 observed reflexions; $\lambda = 0.7107$ Å. In both molecules the P atom is out of the plane of the ring and the Cr(CO)₃ group is so oriented that one of the carbonyl groups is above the P atom.

Einleitung. In einer vorangehenden Veröffentlichung haben Lückoff & Dimroth (1976) über bisher unbekannte π -Komplexe einiger λ^5 -Phosphorringe mit Chrom-, Molybdän- und Wolframtricarbonyl berichtet. In dieser Arbeit wird, anhand der Röntgenstrukturanalysen der Tricarbonylchrom-Komplexe von 1,1-Dimethoxy-2,4,6-triphenyl- λ^5 -phosphorin (I) und von 4-*tert*-Butyl-1,1-difluor-2,6-diphenyl- λ^5 -phosphorin (II), der Einfluss verschiedener Substituenten auf die Verschiebung der Elektronen in diesen π -Komplexen untersucht.

Die Gitterkonstante beider Kristalle wurde durch das Suchprogramm des Philips PW 1100 Automatischen 0567-7408/79/071686-04\$01.00

Vier-Kreis-Diffraktometers gefunden und anhand von 25 starken Reflexen weiter verfeinert. 1991 Reflexe von Kristall (I) und 3817 Reflexe von Kristall (II) wurden bei Zimmertemperatur auf einem automatischen Philips PW 1100 Vier-Kreis-Diffraktometer gemessen (Mo Ka Strahlung, Graphit-Monochromator, θ -2 θ Abtastung), davon hatten 1247 Reflexe ($\theta_{max} = 23^{\circ}$) für (I) und 3457 Reflexe ($\theta_{max} = 25^{\circ}$) für (II) eine Intensität grösser als $1,5\sigma(I)$ und wurden als beobachtet gekennzeichnet. Die Strukturbestimmung erfolgte in beiden Fällen nach den direkten Methoden anhand des MULTAN-Programmes von Declercq, Germain, Main & Woolfson (1973). Die E-Fourier-Synthesen, gerechnet mit den Zeichen und Phasen der wahrscheinlichsten Vorschläge, zeigten in beiden Fällen vollständige Molekülskelette. Die erhaltenen Strukturmodelle wurden anhand der beobachteten Intensitäten und mit Einheitsgewichten nach der Methode der kleinsten Fehlerquadratsumme, mit Hilfe des Blockdiagonalverfahrens des Programms von Ahmed, Hall, Pippy & Huber (1966), so lange verfeinert, bis die Parameterverschiebungen kleiner als die dazugehörigen Standardabweichungen waren. Der auffallend schlechte R-Wert für (I) ist durch die schlechte Qualität des Kristalls bedingt.

© 1979 International Union of Crystallography

1686

$Cr(C_{2}H_{2}O_{2}P)(CO)_{3}$ UND $Cr(C_{2}H_{2}F_{2}P)(CO)_{3}$

Tabelle 1. Atomkoordinaten (×10 ⁴), mittlerer Fehler (σ) in A	Å (×10 ³), mittlere isotropen Temperaturfaktoren in				
Å ² (mit Fehler)					

	Kristall (I)					Kristall (II)					
	x	У	Ζ	ō	\bar{B}_{iso}		x	У	Z	ō	\bar{B}_{iso}
P(1)	8911	5016	949	5	3,9 (2)		3064	10001	8715	1	2,7 (2)
C(2)	9291	5730	2322	18	5,6 (10)		2462	10346	9504	3	2,6 (8)
C(3)	10032	5826	2426	18	6,7 (10)		1458	10024	9101	3	2,6 (7)
C(4)	10507	5224	1518	17	5,5 (9)		871	9620	8008	3	2,6 (8)
C(5)	10296	4471	920	17	5.1 (8)		1233	9634	7170	3	2,8 (8)
C(6)	9593	4234	688	18	5,3 (9)		2213	9945	7365	3	2,8 (7)
C(21)	8833	6383	3218	15	3,4 (7)		2992	10734	10690	3	2,9 (8)
C(22)	8186	6665	2419	18	5,6 (9)		2560	11522	11102	4	4,1 (9)
C(23)	7835	7351	3287	21	6,6 (11)		3031	11850	12225	4	4,8 (11)
C(24)	8075	7675	4557	20	6,5 (11)		3932	11400	12934	3	4,5 (10)
C(25)	8660	7389	5174	17	4,3 (8)		4370	10628	12519	5	5,1 (11)
C(26)	9053	6719	4479	14	3,2 (7)		3893	10290	11396	4	4,0 (10)
C(61)	9394	3460	-164	18	5,4 (10)		2539	9893	6422	3	3,1 (8)
C(62)	8969	2798	762	17	5,0 (9)		3056	10747	6240	4	4,2 (9)
C(63)	8833	1994	-112	19	5,5 (9)		3389	10660	5392	4	4,9 (10)
C(64)	9086	1921	-1738	16	4,3 (8)		3199	9739	4744	4	5,4 (11)
C(65)	9494	2543	-2491	19	7,4 (12)		2678	8888	4914	5	4,6 (11)
C(66)	9636	3303	-1492	16	4,8 (8)		2339	8967	5758	4	4,5 (10)
C(41)	11327	5508	1572	18	5,9 (9)		-162	9192	7773	3	3,2 (9)
C(42)	11523	6319	987	18	5,2 (9)		-717	8811	6541	4	4,2 (9)
C(43)	12206	6520	882	25	11,0 (16)		-777	10071	8012	4	4,3 (9)
C(44)	12740	5983	1569	25	9,5 (15)		-30	8221	8570	4	4,5 (10)
C(45)	12530	5160	2191	26	10,3 (16)						
C(46)	11805	4896	2185	23	10,5 (16)						
O(11)	8650	5427	-629	11	4,9 (6)	F(1)	3901	10787	8891	2	4,2 (5)
C(11)	9132	5934	-1575	22	7,7 (13)	F(2)	3731	8985	9103	2	4,2 (5)
O(12)	8231	4617	1672	11	5,7 (6)						
C(12)	7553	4524	676	12	7,1 (12)						
Cr	9865	4531	3276	3	3,8 (1)		1460	11241	7908	1	2,6(1)
C(10)	9064	4138	4288	19	5,7 (10)		2300	12392	8147	4	5,1 (11)
C(20)	10224	4850	5047	17	4,8 (8)		725	12112	8383	4	3,8 (9)
C(30)	10338	3545	3689	20	7,1 (12)		653	11745	6502	4	4,4 (10)
O(10)	8571	3857	4950	16	9,8 (9)		2799	13128	8403	4	9,9 (11)
O(20)	10479	4986	6409	13	6,8 (7)		243	12671	8638	3	6,7 (8)
O(30)	10600	2920	4125	17	10,5 (11)		128	12086	5641	4	7,7 (9)

Tabelle 1 zeigt de Atomkoordinaten und die isotropen Temperaturfaktoren.*

Diskussion. Wie aus Fig. 1 erkenntlich ist, ist die allgemeine Gestaltung beider Moleküle (I) und (II) ähnlich, verschieden sind die Substituenten am Phosphoratom und am C(4) Kohlenstoffatom. In beiden Fällen ist die Orientierung der Carbonylgruppen hinsichtlich des Phosphorringes identisch. Sie überdecken fast die darunter liegenden Atome des Ringes wie im Chromtricarbonylmethylbenzoat (Carter, McPhail & Sim, 1967) (III) und im Tricarbonyl-(2,4,6-triphenylphosphorin)chrom(0) (Vahrenkamp & Nöth, 1972) (IV). Im Gegensatz zu (IV), steht in den Molekülen (I) und (II) eine CO-Gruppe fast über dem Phosphor-atom. Betrachtet man den Phosphorring und das Chromatom, so stellt man fest, dass die Abstände Cr-C ungefähr gleich lang sind (Tabelle 2) [in (I) ein Mittelwert von 2,228 Å und in (II) 2,227 Å], während der Cr-P Abstand mit 2,770 Å, bzw. 2,681 Å wesentlich länger ist. Im Gegensatz zu unserer ersten Vermutung (Debaerdemaeker, 1976) liegt im Molekül (I) das Phosphoratom stark (0,440 Å) und C(4) leicht (0,169 Å) aus der C(2)-C(3)-C(5)-C(6) Ebene (Tabelle 3), im Molekül (II) dagegen liegt nur das Phosphoratom deutlich (0,450 Å) aus der Ebene und ist nicht planar, wie im nichtkomplexierten Molekül (Thewalt, 1969), und in (IV). Diese Daten sprechen sehr für die Ylid-Struktur von (I) und (II). Die gefundene Orientierung des Chromtricarbonyls über dem Phosphorring lässt sich aus sterischen Gründen erklären: Die Phenylringe und die tert-Butylgruppe an den Atomen C(2), C(4) und C(6) nehmen sehr viel

^{*} Die Liste der Strukturfaktoren ist bei der British Library Lending Division (Supplementary Publication No. SUP 34305: 55 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 Tabelle 2. Atomabstände (Å) (Fehler in Klammern)

 und Bindungswinkel (°)

	Kristall (I)		Kristall (II)
P(1)-C(2) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(6)-P(1)	1,763 (19) 1,392 (25) 1,504 (25) 1,337 (24) 1,376 (25) 1,773 (19)		1,698 (3) 1,433 (4) 1,421 (4) 1,420 (4) 1,442 (4) 1,692 (3)
C(2)-C(21) C(4)-C(41) C(6)-C(61)	1,532 (23) 1,594 (25) 1,455 (25)		1,496 (4) 1,550 (4) 1,515 (4)
P(1)-O(11) P(1)-O(12) O(11)-C(11) O(12)-C(12)	1,569 (12) 1,541 (12) 1,442 (25) 1,530 (24)	P(1)-F(1) P(1)-F(2)	1,535 (2) 1,560 (2)
Cr-P(1) Cr-C(2) Cr-C(3) Cr-C(4) Cr-C(5) Cr-C(6)	2,770 (6) 2,298 (18) 2,162 (18) 2,200 (17) 2,166 (17) 2,312 (18)		2,681 (1) 2,286 (3) 2,179 (3) 2,231 (3) 2,184 (3) 2,254 (3)
Cr-C(10) Cr-C(20) Cr-C(30) C(10)-O(10) C(20)-O(20) C(30)-O(30)	1,831 (19) 1,724 (17) 1,804 (20) 1,164 (25) 1,273 (21) 1,150 (26)		1,849 (4) 1,839 (4) 1,837 (4) 1,147 (6) 1,153 (5) 1,151 (6)
	Kristall (I) (Mittlerer Fehler 1,2°)		Kristall (II) (Mittlerer Fehler 0,2°)
$\begin{array}{c} C(6)-P(1)-C(2)\\ P(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(5)-C(6)-P(1) \end{array}$	103,1 120,6 119,0 124,7 124,7 118,8		106,4 117,4 125,5 119,8 124,6 117,6
$\begin{array}{c} C(6)-P(1)-O(11)\\ C(6)-P(1)-O(12)\\ C(2)-P(1)-O(11)\\ C(2)-P(1)-O(12)\end{array}$) 113,3) 111,4) 116,0) 108,6	C(6)-P(1)-F(1) C(6)-P(1)-F(2) C(2)-P(1)-F(1) C(2)-P(1)-F(2)	113,3 114,1 111,5 116,4
P(1)-C(2)-C(21 C(3)-C(2)-C(21) 121,7) 116,8		121,8 119,3
C(3)-C(4)-C(4) C(5)-C(4)-C(4)) 112,2) 122,5		117,8 122,4
P(1)-C(6)-C(61) C(5)-C(6)-C(61)) 116,5		119,4 120,5
O(11)-P(1)-O(1 P(1)-O(11)-C(1 P(1)-O(12)-C(1	2) 104,6 1) 120,6 2) 119,8	F(1)-P(1)-F(2)	95,2
C(10)-Cr-C(20)C(20)-Cr-C(30)C(30)-Cr-C(10)Cr-C(10)-O(10)Cr-C(20)-O(20)Cr-C(20)-O(20)Cr-C(30)-O(20)	90,0 83,3 91,3 177,1 172,7		87,4 84,3 91,2 177,7 177,3
0(30)0(30)	, 1/1,0		1//,2

über P, C(3) und C(5) einnehmen können und ein CO in trans-Stellung zum elektronenreichen C(4) steht. Verglichen mit Tricarbonyl(1,4-dimethyl-1,2-dihydropyridin)chrom (Huttner & Mills, 1972) und 3ethyl- und Tricarbonyl(5-ethyl-1,2-dihydro-1-methylpyridin)chrom (Bear & Trotter, 1973) stellt man fest, dass das Heteroatom kein Teil der Ebene ist, aber das Cr(CO)₃-Fragment so gedreht ist, dass eine CO-Gruppe die Stellung über dem Atom einnimmt, das aus der Ebene liegt. Die P-C Abstände in (I), (1,763 und 1,773 Å) liegen fast zwischen einer C-P Einfach-Bindung und C=P Doppel-Bindung [in $(C_5H_5)_3$ -P=CH₂, C-P: 1,82, C=P: 1,66 Å (Bart, 1969)] und sind etwas länger als im nicht komplexierten λ^{5} -Phosphorin (Thewalt, 1969). In Molekül (II) sind die P-C Abstände (1,698 und 1,692 Å) dagegen wesentlich kürzer und nähern sich mehr P=C Doppelbindungen. Die C(12)-O(12)-P-O(11)-C(11) und F(1)-P-F(2) Ebenen stehen fast senkrecht auf der C(2)-P-C(6) Ebene. Die P-OCH₃ Abstände stimmen innerhalb der Fehlergrenze mit der Bindungslänge für Phosphorestern überein, die P-F Abstände mit denen. die für einfache P-F Bindungen gefunden werden. Die

Platz ein, andererseits liegt das Phosphoratom aus der Ebene und macht auf der anderen Seite der Ebene Platz, so dass die Carbonylgruppen den freien Platz

Fig. 1. Molekül (I) und (II). Atome, die nur mit einer Zahl bezeichnet sind, sind C-Atome. Die Numerierung der Substituenten am Phosphorinring bezieht sich auf die Atome, an den sie im Ring gebunden sind.

Tabelle 3. Beste Ebene durch verschiedene Atomgruppierungen

Die angegebenen Ebenengleichungen beziehen sich auf das kristallographische Achsensystem und sind in Å normiert. Für jedes Atom ist der Abstand zur betreffenden Ebene in Å angegeben (das Vorzeichen bezieht sich auf die Ebene).

Molekül (I)

Ebene C(2)-C(3)-C(5)-C(6)-0.139x + 8.018v - 7.307z - 2.764 = 0C(2) 0,004 (20); C(3) -0,004 (20); C(5) 0,005 (19); C(6) -0.004 (20); P(1) 0.440 (10); C(4) 0.169 (19); Cr - 1.662 (9)

Winkel zwischen Ebene C(2)-C(3)-C(5)-C(6) und P(2)-C(2)-C(6)23,6 (7)° C(3)-C(4)-C(5)165,1 (10)°

Molekül (II)

Ebene C(2)-C(3)-C(5)-C(6)

 $-3 \cdot 167x + 11 \cdot 73y - 1 \cdot 904z - 6 \cdot 385 = 0$ C(2) -0.008 (17); C(3) 0.009 (17); C(5) -0.009 (17); C(6) 0,008 (17); P(1) -0,450 (17); C(4) -0,068 (17); Cr 1,663 (17)

Winkel zwischen Ebene C(2)-C(3)-C(5)-C(6) und

$$\begin{array}{ll} P(1)-C(2)-C(6) & -26,6 \ (1)^{\circ} \\ C(3)-C(4)-C(5) & -174,3 \ (2)^{\circ} \end{array}$$

gemittelten C-C Abstände in den Phenylringen von 1,39 (3) Å in (I) und 1,399 (6) Å in (II) stimmen gut mit der C=C Bindungslänge in Benzol überein.

Die Cr-C(Carbonyl) und die C-O Bindungslängen, 1,78 (2) und 1,19 (2) Å in (I) bzw. 1,841 (4)

und 1,150 (6) Å in (II), stimmen mit denen, die für andere Tricarbonylchrom Komplexe (Sim, 1967) gefunden werden, gut überein. Die C-Cr-C-Winkel [88,2 in (I) und 87,6° in (II)] liegen sehr nahe bei 90° und die Cr-C-O-Winkel sehr nahe bei 180° [173,9 in (I) und 177,4° in (II)].

Ich möchte mich bei Herrn Professor K. Dimroth von der Universität Marburg für die Überlassung der Kristalle bedanken.

Literatur

- AHMED, F. R., HALL, S. R., PIPPY, M. G. & HUBER, C. P. (1966). World List of Crystallographic Computer Programs, 2. Aufl., Anhang, S. 52. Utrecht: Oosthoek. BART, J. C. J. (1969). J. Chem. Soc. B, S. 356.
- BEAR, C. A. & TROTTER, J. (1973). J. Chem. Soc. Dalton Trans. S. 2285-2288.
- CARTER, O. L., MCPHAIL, A. T. & SIM, G. B. (1967). J. Chem. Soc. A, S. 1619-1629.
- DEBAERDEMAEKER, T. (1976). Angew. Chem. 88, 544-545.
- DECLERCO, J. P., GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1973). Acta Cryst. A29, 231–234.
- HUTTNER, G. & MILLS, O. S. (1972). Chem. Ber. 105, 3924-3935.
- LÜCKOFF, M. & DIMROTH, K. (1976). Angew. Chem. 88, 543-544.
- SIM, G. A. (1967). Annu. Rev. Phys. Chem. 18, 57-80.
- THEWALT, U. (1969). Angew. Chem. 20, 783-784.
- VAHRENKAMP, H. & NÖTH, H. (1972). Chem. Ber. 105. 1148-1157.

Acta Cryst. (1979). B35, 1689-1691

The Structure of μ -Oxo-bis[tribenzyltin(IV)]

By Christopher Glidewell* and David C. Liles

Chemistry Department, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland

(Received 27 November 1978; accepted 12 March 1979)

Abstract. $[Sn_2(C_7H_7)_6O], C_{42}H_{42}OSn_2, M_r = 800.14,$ rhombohedral, $R\bar{3}$, a = 9.667 (2) Å, a = 84.05 (3)°, $U = 889.7 \text{ Å}^3$, Z = 1, $D_c = 1.493 \text{ Mg m}^{-3}$, F(000) =402, $\lambda(Mo K\alpha) = 0.71069 \text{ Å}, \mu = 1.311 \text{ mm}^{-1}$. Final R = 0.0197. The structure consists of molecules lying along the threefold axis of the unit cell, in which the SnOSn fragment is linear and centrosymmetric. The Sn-O distance is 1.919 (0) Å and the Sn-C distance 2.167 (2) Å.

Introduction. As part of our study of organometallic oxo and hydroxo compounds, we have reported the structure of O(Ph₃Sn)₂ (Glidewell & Liles, 1978b), where the SnOSn angle is $137.3 (1)^\circ$ and the Sn \cdots Sn distance 3.641 (1) Å. Seeking further support for the view that the wide angles in μ -oxo compounds are primarily limited by the non-bonded $M \cdots M$ distances, we have determined the structure of the benzyl analogue O[(PhCH₂)₃Sn]₂ which turns out, unexpectedly, to contain a linear SnOSn fragment.

The compound was prepared in a single-step reaction from SnBr₄ (Bähr & Zoche, 1955).

0567-7408/79/071689-03\$01.00 © 1979 International Union of Crystallography

^{*} To whom correspondence should be addressed.